Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 8(1)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36810412

RESUMO

The incorporation of bioactive and biocompatible fillers improve the bone cell adhesion, proliferation and differentiation, thus facilitating new bone tissue formation upon implantation. During these last 20 years, those biocomposites have been explored for making complex geometry devices likes screws or 3D porous scaffolds for the repair of bone defects. This review provides an overview of the current development of manufacturing process with synthetic biodegradable poly(α-ester)s reinforced with bioactive fillers for bone tissue engineering applications. Firstly, the properties of poly(α-ester), bioactive fillers, as well as their composites will be defined. Then, the different works based on these biocomposites will be classified according to their manufacturing process. New processing techniques, particularly additive manufacturing processes, open up a new range of possibilities. These techniques have shown the possibility to customize bone implants for each patient and even create scaffolds with a complex structure similar to bone. At the end of this manuscript, a contextualization exercise will be performed to identify the main issues of process/resorbable biocomposites combination identified in the literature and especially for resorbable load-bearing applications.

2.
J Biomech Eng ; 145(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36350265

RESUMO

While dental composite long-term aging has already been studied in the past, no data exist about the early aging while it might be detrimental regarding the composites' longevity. This study aims to better understand the effects of early water exposure on dental composites. Dental resin composites with different fillers ratio were subjected to water exposure during 24 h, 1 week, or 1 month. After photopolymerization, the samples were stored at different conditions, whether in wet or dry condition (W, D, respectively) and in wet conditions after a first 24 h storage in dry conditions (DW). Three-point bending tests were performed to measure the flexural modulus. The samples were then subjected to a sorption/desorption protocol. While the matrix alone did not undergo any mechanical degradation with exposure time, the composites matrices presented a decrease in elastic modulus. This decrease was the highest for the matrix with nonsilanized fillers. Interestingly, the DW condition was detrimental for all the samples. Regarding the sample with nonsilanized fillers in DW for 1 month presented an elastic modulus lower than the matrix alone. These results were assigned to the sorption capacity of the polymer matrix, suggesting that the diffusion mechanisms and the nature of water molecules are determinant in the composite degradation. This study showed that dental composite early degradation mechanisms after water exposure are involved in the polymer matrix postpolymerization process as soon as after 24 h. Such mechanisms are detrimental in terms of the dental composite efficiency and have to be understood.


Assuntos
Polímeros , Água
3.
Polymers (Basel) ; 13(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34503031

RESUMO

Poly(l-lactide-co-d,l-lactide) PDLA/45S5 Bioglass® (BG) composites for medical devices were developed using an original approach based on a thermal treatment of BG prior to processing. The aim of the present work is to gain a fundamental understanding of the relationships between the morphology, processing conditions and final properties of these biomaterials. A rheological study was performed to evaluate and model the PDLA/BG degradation during processing. The filler contents, as well as their thermal treatments, were investigated. The degradation of PDLA was also investigated by Fourier transform infrared (FTIR) spectroscopy, size-exclusion chromatography (SEC) and mechanical characterization. The results highlight the value of thermally treating the BG in order to control the degradation of the polymer during the process. The present work provides a guideline for obtaining composites with a well-controlled particle dispersion, optimized mechanical properties and limited degradation of the PDLA matrix.

4.
J Adhes Dent ; 23(4): 297-308, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34269540

RESUMO

Different kinds of interactions between the restorative material and mineralized dental tissues result in secondary caries around dental composites. Of these, the mechanical interactions have to be carefully investigated. Due to the elastic mismatch between dental tissues and the composite restoration, complex stresses and strains develop at their interface. This complex mechanical environment disturbs the demineralization-remineralization equilibrium of dental hard tissues. The fluid flow both over and within enamel and dentin, associated with their complex ultrastructure and mechanical behavior, is a key factor. It is known that external mechanical loading can indirectly promote the dissolution of enamel and dentin through a pumping action of cariogenic fluids in and out of microgaps at the interface between mineralized tissues and composite. Mechanical loading can also directly influence the physicochemical behavior of dental hard tissues by inducing complex strain and stress fields on the crystal scale. It is important to consider both the direct and indirect paths by which mechanical loading can influence the apatite dissolution kinetics. Therefore, a systematic approach should be used to investigate the mechanism of secondary caries formation considering the tooth-composite interface as a unique complex in which each element has an influence on the other.


Assuntos
Resinas Compostas , Cárie Dentária , Cárie Dentária/etiologia , Suscetibilidade à Cárie Dentária , Esmalte Dentário , Materiais Dentários , Restauração Dentária Permanente , Dentina , Humanos
5.
Polymers (Basel) ; 12(6)2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492948

RESUMO

Two-dimensional triangulated surface models for membranes and their three-dimensional (3D) extensions are proposed and studied to understand the strain-induced crystallization (SIC) of rubbers. It is well known that SIC is an origin of stress relaxation, which appears as a plateau in the intermediate strain region of stress-strain curves. However, this SIC is very hard to implement in models because SIC is directly connected to a solid state, which is mechanically very different from the amorphous state. In this paper, we show that the crystalline state can be quite simply implemented in the Gaussian elastic bond model, which is a straightforward extension of the Gaussian chain model for polymers, by replacing bonds with rigid bodies or eliminating bonds. We find that the results of Monte Carlo simulations for stress-strain curves are in good agreement with the reported experimental data of large strains of up to 1200%. This approach allows us to intuitively understand the stress relaxation caused by SIC.

6.
Dent Mater ; 35(11): 1654-1664, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31554599

RESUMO

OBJECTIVE: Resin-based composites are widely used in dental restorations; however, their volumetric shrinkage during polymerization leads to several issues that reduce the restoration survival rates. For overcoming this problem, a deep study of shrinkage phenomena is necessary. METHODS: In this study, micro-tomography (µ-CT) is combined with digital volume correlation (DVC) to investigate the effect of several factors on the polymerization strain of dental composites in model cavities: the presence/absence of an adhesive, the use of transparent/blackened cavities, and irradiation times between 1 and 40s. RESULTS: The results indicate that the presence of an adhesive at the interface between the cavity and composite does not reduce the total strain but instead limits it to a preferential direction. In addition, regardless of the conditions, the main strain is generated along the axis parallel to the polymerization irradiation (the vertical axis). Finally, the total strain appears to occur in the first 5s of irradiation, with no further evolution observed for longer irradiation times. SIGNIFICANCE: This work provides new insight into resin-based composite shrinkage and demonstrates the benefit of coupling DVC and µ-CT to better understand the degradation mechanisms of these materials.


Assuntos
Resinas Compostas , Restauração Dentária Permanente , Correlação de Dados , Teste de Materiais , Polimerização
7.
Dent Mater ; 33(3): 271-279, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28094024

RESUMO

OBJECTIVE: To prepare organically modified montmorillonite (OM MMT) and assess mechanical, physical, chemical and biological effects of its introduction into resin-composites. METHODS: Natural MMT clay was modified by a methacrylate functionalized quaternary ammonium intercalating agent. Interlayer distance was measured by X-ray diffraction. Dental composites were then prepared with x=0, 1, 2.5, 5 or 7.5wt.% of OM MMT, (75-x) wt.% of silanated barium glass and 25wt.% of methacrylate based matrix). Relative weight loss was measured and the effect of the substitution on mechanical properties was studied by dynamic mechanical analysis and hardness tests. Properties of resin composites were evaluated in terms of water sorption, light transmittance, biological tests and by high-performance liquid chromatography (HPLC). RESULTS: Resin based composites with well-dispersed organically modified MMT were successfully prepared. There were no significant weight loss differences shown by TGA within all samples. The DMA analysis showed that the introduction of clays have a beneficial effect in increasing the storage and elastic modulus of composites. Clay presence was shown to interfere with the blue light transmittance, affecting Vickers hardness and water sorption levels. The amount of released monomers measured from extracts was below expected levels for this type of materials and biological tests show satisfactory cell compatibility. SIGNIFICANCE: This paper reports the successful functionalization of MMT by a methacrylate group and further incorporation in experimental dental composites. Physical and biological results show a potential interest to the application of nanoclays into dental resin composites.


Assuntos
Resinas Compostas , Materiais Dentários , Dureza , Teste de Materiais , Metacrilatos , Ácidos Polimetacrílicos , Silanos , Propriedades de Superfície
8.
Phys Chem Chem Phys ; 18(5): 3472-81, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26750589

RESUMO

Strain induced crystallization (SIC) of a natural rubber (NR) and a synthetic rubber (IR) with a high amount of cis-1,4 units (98.6%) is studied, thanks to in situ wide angle X-ray (WAXS) experiments at room temperature performed in a large range of strain rates. During stretching at a low strain rate (4.2 × 10(-3) s(-1)), SIC in IR occurs at a larger stretching ratio than in NR. As a result, the crystallinity index at a given stretching ratio is lower in IR than in NR, in spite of the similar crosslink densities of the chains involved in the crystallization in both materials. This lower ability for crystallization in IR is attributed to the presence of branching along its backbone and its lower stereoregularity. Conversely, dynamic experiments performed at high strain rates (10(1)/10(2) s(-1)) show for both materials a similar ability to crystallize. This unexpected result is confirmed by monotonic tensile tests performed in a large range of strain rates. The reason is thermodynamic: the chain extension plays a predominant role compared to the role of the microstructure defects when the strain rate is high, i.e. when the kinetics of the crystallite nucleation forces the crystallization to occur at a large stretching ratio. A thermodynamic model enables qualitative reproduction of the experimental results.

9.
J Biomed Mater Res B Appl Biomater ; 104(1): 180-91, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25677798

RESUMO

Poly(lactic acid) is nowadays among the most used bioabsorbable materials for medical devices. To promote bone growth on the material surface and increase the degradation rate of the polymer, research is currently focused on organic-inorganic composites by adding a bioactive mineral to the polymer matrix. The purpose of this study was to investigate the ability of a poly(L,DL-lactide)-Bioglass® (P(L,DL)LA-Bioglass(®) 45S5) composite to be used as a bone fixation device. In vitro cell viability testing of P(l,dl)LA based composites containing different amounts of Bioglass(®) 45S5 particles was investigated. According to the degradation rate of the P(L,DL)LA matrix and the cytocompatibility experiments, the composite with 30 wt % of Bioglass® particles seemed to be the best candidate for further investigation. To study its behavior after immersion in simulated physiological conditions, the degradation of the composite was analyzed by measuring its weight loss and mechanical properties and by proceeding with X-ray tomography. We demonstrated that the presence of the bioactive glass significantly accelerated the in vitro degradation of the polymer. A preliminary in vivo investigation on rabbits shows that the addition of 30 wt % of Bioglass(®) in the P(L,DL)LA matrix seems to trigger bone osseointegration especially during the first month of implantation. This composite has thus strong potential interest for health applications.


Assuntos
Cerâmica , Fixadores Internos , Ácido Láctico , Teste de Materiais , Osseointegração/efeitos dos fármacos , Polímeros , Animais , Cerâmica/química , Cerâmica/farmacologia , Ácido Láctico/química , Ácido Láctico/farmacologia , Camundongos , Poliésteres , Polímeros/química , Polímeros/farmacologia , Coelhos , Fatores de Tempo
10.
Phys Chem Chem Phys ; 17(23): 15331-8, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25998109

RESUMO

Strain-induced crystallization (SIC) of natural rubber (NR) is studied during dynamic cycles at high frequencies (with equivalent strain rates ranging from 7.2 s(-1) to 290 s(-1)). The testing parameters are varied: the frequency, the temperature and the stretching ratio domain. It is found that an increase of the frequency leads to an unexpected form of the CI-λ curve, with a decrease of the crystallinity during both loading and unloading steps of the cycle. Nevertheless, the interpretation of the curves needs to take into account several phenomena such as (i) instability of the crystallites generated during the loading step, which increases with the frequency, (ii) the memory of the previous alignment of the chains, which depends on the minimum stretching ratio of the cycle λmin and the frequency, and (iii) self-heating which makes the crystallite nucleation more difficult and their melting easier. Thus, when the stretching ratio domain is above the expected stretching ratio at complete melting λmelt, the combination of these phenomena, at high frequencies, leads to unexpected results such as complete melting at λmin, and hysteresis in the CI-λ curves.

11.
Macromol Rapid Commun ; 34(19): 1524-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23970461

RESUMO

In this study, aqueous emulsion polymerization of n-butyl acrylate is performed in batch conditions without surfactants using a poly(acrylic acid)-trithiocarbonate macro-RAFT agent to control the polymerization and to stabilize the emulsion. According to the polymerization-induced self-assembly (PISA) approach, well-defined amphiphilic PAA-b-PBA diblock copolymers form and self-assemble during synthesis to yield highly stable core-shell particles with an extremely thin hard PAA shell. For the first time, we report here the specific properties of films obtained from these particular latexes. After drying the aqueous dispersion, tough and transparent films are obtained. Although the films are not chemically cross-linked, they do not dissolve in good solvents for PBA. Moreover, they remain transparent even after immersion in water. Rheology shows that the films are both stiff and ductile, thanks to the nanostructured but very low volume fraction (less than 3 wt%) of PAA forming a percolating network in the soft PBA. Compared with conventional core-shell-based films, this approach affords for the first time a route to a thin percolating honeycomb nanostructure with a sharp and strong interface between the two phases. The versatility of the synthetic procedure opens perspectives for a large range of functional materials.


Assuntos
Acrilatos/química , Nanoestruturas/química , Polímeros/química , Emulsões/química , Látex/química , Polimerização , Reologia , Tensoativos/química , Água/química
12.
J Biomed Mater Res B Appl Biomater ; 99(2): 412-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21948519

RESUMO

We report on the crystallization processes occurring at the surface of PDLLA-Bioglass® composites immersed in simulated body fluid. Composites manufactured by injection molding and containing different amounts (0, 20, 30, and 50 wt %) of 45S5 Bioglass® particles were tested for durations up to 56 days and compared with Bioglass® particles alone. Crystallization processes were followed by visual inspection, X-ray diffraction (with Rietveld analysis) and scanning electron microscopy. Both calcite and hydroxyapatite were formed at the surface of all materials, but their relative ratio was dependent on the Bioglass® content and immersion time. Hydroxyapatite was always the major phase after sufficient immersion time, insuring bioactivity of such composites especially for Bioglass® content higher than 30 wt %. A scenario of crystallization is proposed. Rapid degradation of the composites with 50 wt % was also observed during immersion. Therefore, composites with 30 wt % of Bioglass® particles seem to exhibit the best balance between bioactivity and stability at least during the first weeks of immersion in contact with body fluids.


Assuntos
Implantes Absorvíveis , Líquidos Corporais/química , Cerâmica/química , Ácido Láctico/química , Polímeros/química , Materiais Biocompatíveis , Cristalização , Durapatita/química , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura/métodos , Poliésteres , Propriedades de Superfície , Engenharia Tecidual/métodos , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...